Product Brochure

/inritsu

For MT8870A Universal Wireless Test Set

MX887x Series Measurement Software MV887x Series Waveforms

Wireless Module Test Solution

WLAN 802.11ac

Cutting Time and Costs

Bluetooth

Versatile Wireless Module Tests

Support for multiple wireless standards assures future-proof testing as wireless standards evolve and develop. Mass production of wireless modules requires flexibility in supporting diversifying standards as well as reduced lead-time and costs through better efficiency.

The MT8870A Universal Wireless Test Set accommodates up to four test modules, supporting flexible and efficient

inspection lines.

WLAN

802.11ac

FM

Audio

The licensed TX measurement software packages and waveforms make it easy to support each communication standard.

MT8870A Universal Wireless Test Set MU887000A TRX Test Module See the separate catalog (MT8870A-E-A-1) for details.

One License Supports Four Modules

To enable Tx measurement software and waveforms, each license is sold separately. One license can be used for up to four TRX test modules, cutting test equipment costs.

A Tx measurement software package is required for Tx tests for each communication standard and a waveforms is required for Rx tests.

MX887031A WLAN 802.11ac TX Measurement

Flexible Test System Configuration

16 Simultaneous Connections: Each MU887000A TRX Test Module has four test ports. Up to four test modules can be installed in one MT8870A Universal Wireless Test Set, supporting simultaneous connection of 16 test devices. This versatility eliminates the need for external combiners and also reduces test fixture calibration.

Four simultaneous measurements: Simultaneous testing reduces test times and allows devices to be tested in a realistic multi-wireless environment.

ΡΟΙΝΤ

Each MU887000A is equipped with a 160 MHz wideband signal generator and analyzer for support of 802.11ac testing.

CombiTest for Controlling Leading Chipsets

The CombiTest PC Software that bundled with the MT8870A automates the entire manufacturing test flow, including chipset calibration and testing. It includes control packages for all leading chipsets, cutting test-system development time and costs.

See page 17 for details

Wireless LAN Measurement Solution

MX887030A WLAN 802.11b/g/a/n TX Measurement MV887030A WLAN 802.11b/g/a/n Waveforms

The MT8870A Universal Wireless Test Set/MU887000A TRX Test Module supports non-signalling transmitter and receiver tests for all WLAN 802.11b/g/a/n-compliant devices.

The MU887000A-001 6 GHz Frequency Extension Option is required to measure 802.11a/n in 5 GHz band.

Transmitter Test

Installing the MX887030A WLAN 802.11b/g/a/n TX Measurement Software in the MT8870A Universal Wireless Test Set provides support for measurement of key IEEE 802.11-March 2012 Tx characteristics using all installed TRX test modules.

802.11b TX Measurement

• IEEE 802.11-March 2012 : 802.11b TX Test

802.11b	Test Items
17.4.7.2	Transmit Power Levels
17.4.7.3	Transmit Power Level Control
17.4.7.4	Transmit Spectrum Mask
17.4.7.5	Transmit Center Frequency Tolerance
17.4.7.6	Chip Clock Frequency Tolerance
17.4.7.7	Transmit power-on and power-down ramp
17.4.7.8	RF Carrier Suppression
17.4.7.9	Transmit Modulation Accuracy

Additional 802.11b Measurements

Test Items
Power crest factor
CCDF
IQ offset
Phase & magnitude error
Occupied bandwidth
Power spectral density

• Graphical Displays (DSSS)

Graphs
Power profile
Spectral mask
Constellation diagram
CCDF

802.11a/g/n TX Measurement

• IEEE 802.11-March 2012 : 802.11a/g/n TX Test

802.11a	802.11g	802.11n	Test Items
18.3.9.2	19.4.8.2	20.3.20.3	Transmit Power Levels
18.3.9.3	19.5.5	20.3.20.1	Transmit Spectrum Mask
18.3.9.5	19.4.8.3	20.3.20.4	Transmit center frequency tolerance
18.3.9.6	19.4.8.4	20.3.20.6	Symbol Clock frequency tolerance
18.3.9.7.2	19.4.8 (18.3.9.7.2)	20.3.20.7.2	Transmitter center frequency leakage
18.3.9.7.3	19.4.8 (18.3.9.7.3)	20.3.20.2	Transmitter spectral flatness
18.3.9.7.4	19.4.8 (18.3.9.7.4)	20.3.20.7.3	Transmitter constellation error
18.3.9.8	19.4.8 (18.3.9.8)	20.3.20.7.4	Transmitter modulation accuracy test

• Additional 802.11a/g/n Measurements

Test Items
Power crest factor
CCDF
Occupied bandwidth
Power spectral density

Graphical Displays (OFDM)

ſ	Graphs
	Power profile
	Spectral mask
Γ	Constellation diagram
Γ	CCDF
Γ	Spectral Flatness
Γ	EVM against Symbol
	EVM against Subcarrier

The CombiView software that ships with the MT8870A displays measurement results graphically. Multiple displays can be defined and all numeric results can be displayed in one window.

802.11n TX Measurement using CombiView

Receiver Test

The MV887030A application provides support for transmission of WLAN 802.11b/g/a/n signals from the vector signal generator to the device under test. The number of received packets can then be read using the chipset vendor's control software.

MU887000A TRX Test Module

Waveform Parameter

802.11 Standard	Data Rate/Modulation	Bandwidth	Packet Length	Remarks
802.11b	11, 5.5, 2, 1 Mbps	-	1024 or 100 bytes	Long Preamble
802.11a/g	54, 48, 36, 24, 18, 12, 9 and 6 Mbps	-	1000 or 100 bytes	
802.11n	MCS 0 to 7 and 32	20 MHz and 40 MHz	4096 or 500 bytes	Nss: 1, Guard Interval: Long

802.11b RX Measurement

• IEEE 802.11-March 2012 : 802.11b RX Test

802.11b	Test Items
17.4.8.2	Receiver minimum input level sensitivity
17.4.8.3	Receiver maximum input level
17.4.8.4	Receiver adjacent channel rejection*

*: Requires separate signal generator

802.11a/g/n RX Measurement

• IEEE 802.11-March 2012 : 802.11a/g/n RX Test

802.11a	802.11g	802.11n	Test Items
18.3.10.2	19.5.2	20.3.21.1	Receiver minimum input level sensitivity
18.3.10.3	19.5.3	20.3.21.2	Adjacent channel rejection*
18.3.10.4		20.3.21.3	Nonadjacent channel rejection*
18.3.10.5	19.5.4	20.3.21.4	Receiver maximum input level

*: Requires separate signal generator

MX887031A WLAN 802.11ac TX Measurement MV887031A WLAN 802.11ac Waveforms

The MT8870A Universal Wireless Test Set/MU887000A TRX Test Module (with MU887000A-001 6 GHz Frequency Extension) supports nonsignalling transmitter and receiver tests for all WLAN 802.11ac-compliant devices.

Transmitter Test

Installing the MX887031A WLAN 802.11ac TX Measurement Software in the MT8870A Universal Wireless Test Set supports in-band wireless measurements defined by the latest IEEE P802.11ac/D5.0 standard (January 2013 provisional version) on all installed TRX test modules. The 802.11ac 20/40/80/160 MHz bandwidths and 256QAM (MCS9) modulation method are supported.

Using the CombiView PC application bundle displays graphs of 802.11ac TX measurements.

802.11ac TX Measurement using CombiView

802.11ac TX Measurement

• IEEE P802.11ac/D5.0, January 2013 : 802.11ac TX Test

802.11ac	Test Items	
22.3.18.1	Transmit spectrum mask	
22.3.18.2	Spectral flatness	
22.3.18.3	Transmit center frequency tolerance	
22.3.18.3	Symbol Clock frequency tolerance	
22.3.18.4	Modulation accuracy	
22.3.18.4.2	Transmitter center frequency leakage	
22.3.18.4.3	Transmitter constellation error	
22.3.18.4.4	Transmitter modulation accuracy (EVM) test	
	Transmit power level	

Additional 802.11ac Measurements

Т	est Items
Power crest factor	
CCDF	
Occupied bandwidth	
Power spectral densit	у

• Graphical Displays (OFDM)

Graphs
Power profile
Spectral mask
Constellation diagram
CCDF
Spectral Flatness
EVM against Symbol
EVM against Subcarrier

Receiver Test

The MV887031A application provides support for transmission of WLAN 802.11ac signals from the vector signal generator to the device under test. The number of received packets can then be read using the chipset vendor's control software.

MU887000A TRX Test Module

Waveform Parameter

802.11 Standard	Data Rate/Modulation	Bandwidth	Packet Length	Remarks
802.11ac	MCS 0 to 9	20, 40, 80, 160 MHz	4096 or 500 bytes	Nss: 1, Guard Interval: Long

802.11ac RX Measurement

• IEEE P802.11ac/D5.0, January 2013 : 802.11ac RX Test

802.11ac	Test Items
22.3.19.1	Receiver minimum input level sensitivity
22.3.19.2	Adjacent channel rejection*
22.3.19.3	Nonadjacent channel rejection*
22.3.19.4	Receiver maximum input level

*: Requires separate signal generator

Wireless LAN MIMO Measurement Solution

WLAN 802.11n/11ac MIMO Measurement **Function**

Installing the MU887000A Tx Test Module^{*1} in the MT8870A Universal Wireless Test Set with the installed WLAN TRx Measurement Software supports easy set-up and measurement of up to 4×4 Wireless LAN MIMO devices.

*1: Requires MU887000A-001 6 GHz Frequency Extension option when measuring WLAN 802.11n (5 GHz) or 802.11ac

Normally, measuring each antenna of a MIMO device (streaming) requires a system set-up composed of up to four measuring instruments of the same type as well as synchronized timing of the signal generators required for MIMO measurement and the 10-MHz reference signal generators, plus complex cable connections to control each measuring instrument.

This type of system set-up is not only troublesome for technicians performing MIMO measurements, but also wastes man hours and money. Integrating the MU887000A into the MT8870A main frame solves the problems of synchronizing signals over external cables experienced with conventional MIMO measurement systems to simplify system set-up and slash time and costs.

The MX887030A WLAN 802.11b/g/a/n Tx Measurement Software and MV887030A WLAN 802.11b/g/a/n Waveform Files are required for WLAN 802.11n MIMO measurements.

The MX887031A WLAN 802.11ac Tx Measurement Software and MV887031A WLAN 802.11ac Waveform Files are required for WLAN 802.11ac MIMO measurements*2.

*2: Supports up to 4×4 MIMO WLAN 802.11ac measurements

MIMO Measurement Solutions

The MT8870A is the ideal MIMO measurement solution for WLAN MIMO devices at every stage from R&D to production.

True MIMO

Features

The MT8870A supports parallel measurement of wireless LAN device streaming characteristics using multiple MU887000A units installed in the main frame.

It is ideal for performing streaming measurements from each antenna under conditions closely mimicking a real usage environment at the R&D and design stages. There is no need for troublesome external cable connections, because the timing of each MU887000A unit and the 10-MHz reference frequency are synchronized by the internal connections, offering easy True MIMO measurement.

Transmitter Test

- DUT transmits four MIMO signals simultaneously.
- MU887000A in each slot tests each antenna (stream)
- Fully independent measurements with parallel processing by each MU887000A
- Measurement Results

Each Power, EVM, Spectral Mask, etc.

est Sequence:	
ntenna 1	

Antenna 3	
Antenna 4	
Test Resu	lts:
	EVM_1, Power_1, Spectral

mask_1 Antenna 2: EVM_2, Power_2, Spectral mask_2 ... Antenna 3: EVM_3, Power_3, Spectral mask_3 ... Antenna 4: EVM_4, Power_4, Spectral mask_4 ...

Receiver Test

- Sends test packets for each antenna to TRx Test Module in each slot
- Measurement Results
- Rx Sensitivity of Each Antenna
- Synchronization 10-MHz Reference Frequency **Digital Timing**

Note: RF Local Frequency Sync not supported

All spatial streams must be synchoronized to the start of the packet.

Sequential MIMO

Features

Wireless LAN device MIMO measurements at R&D design require stream measurements from each antenna. Although True MIMO measurement supports an environment in which each antenna is measured simultaneously in parallel, the cost is high because multiple MU887000A units are required. Since one MU887000A can support up to four test ports, the Sequential MIMO measurement functions helps cut costs by switching between antennas to perform accurate sequential measurement of each antenna of the MIMO device.

Transmitter Test

- DUT transmits four MIMO signals simultaneously
- MT8870A switches connected test port and performs TRx test at each antenna (stream)
- Measurement Results
- Each Power, EVM, Spectral Mask, etc.

Receiver Test

- MT8870A switches test port and sends test signal to each antenna to perform Rx sensitivity test
- Waveform uses SISO signal
- Measurement Results Rx Test for Each Antenna

Composite MIMO

Features

Production-line operators urgently need ways to cut production costs by shortening tact times through reduced measurement times. MIMO device measurement methods currently focus on measuring each antenna one-by-one but viewed from the perspective of reduced tact time and lower costs, production lines could achieve better efficiency and profits with one single measurement of all MIMO device antennas instead of separate measurements of all antennas (total streaming). Installing the MT8870A with one MU887000A supports use of the Composite MIMO measurement function to measure wireless LAN RF characteristics at one time by combining and dividing multiple MIMO signals using an external divider (combiner)*.

*: Recommended Product

Mini-Circuits, ZN4PD1-63 + (Frequency Range: 2000 MHz to 6000 MHz)

Transmitter Test

- DUT transmits three MIMO signals simultaneously
- MT8870A receives composite test signal via combiner, which combines each streaming MIMO signal output from each antenna, and evaluates RF characteristics
- Measurement Results Composite Power (individual powers) Composite EVM and Spectral Mask Values

Test Sequence:

Composite

Test Results:

EVM_Avg, Power_Avg, Spectral mask_Avg ...

Receiver Test

- Diversity Test (SISO signal)
- Transmits test signal from MT8870A and splits into identical signals at divider (combiner) for input to each antenna
- Since same signal received by multiple antennas, performs better evaluation than Rx sensitivity results obtained from one antenna
- Measurement Results
 - Rx Sensitivity (Result is one value only; test specifications of sensitivity changed by number of antennas)

Bluetooth Measurement Solution

MX887040A Bluetooth TX Measurement MV887040A Bluetooth Waveforms

The MT8870A Universal Wireless Test Set/MU887000A TRX Test Module supports non-signalling transmitter and receiver tests for Bluetooth Basic Rate (BR), Enhanced Data Rate (EDR) and low-energy (Smart) devices.

Transmitter Test

The MX887040A Bluetooth TX Measurement Software has two Bluetooth TX test modes. The SIG Standard mode measures TX test packets sent from the device under test according to the Bluetooth RF Test Specifications. In SIG standard mode, the system returns only measurements that are compatible with the payload type of the captured packets. In Speed Test mode, the system returns results for all enabled measurements regardless of the packet payload.

Because the Speed Test mode supports all BR/EDR measurements for individual packet types, it is ideal for rapid testing on production lines.

Bluetooth TX Measurement using CombiView

Bluetooth TX Measurement

• Bluetooth Test Specification v1.2/2.0/2.0 + EDR/2.1/2.1 + EDR/3.0/3.0 + HS/4.0: RF-PHY.TS.4.0.2/RF-PHY.TS.4.0.3: TX Test

Specification	Test Items		
TRM/CA/01/C	Output Power		
TRM/CA/03/C	Power Control		
TRM/CA/06/C	TX Output Spectrum – Adjacent Channel Power		
TRM/CA/07/C	Modulation Characteristics		
TRM/CA/08C	Initial carrier frequency tolerance		
TRM/CA/09/C	Carrier Frequency drift		
TRM/CA/10/C	EDR relative transmit power		
TRM/CA/11/C	EDR Carrier frequency stability		
TRM/CA/11/C	EDR Modulation accuracy		
TRM/CA/12/C	EDR Differential Phase Encoding		
TRM/CA/13/C	EDR In-band Spurious Emissions		
TRM/CA/14/C	Enhanced Power Control		
TRM-LE/CA/01/C and TRM-LE/CA/02/C	BLE Output power		
TRM-LE/CA/03/C and TRM-LE/CA/04/C	BLE In-band Emissions		
TRM-LE/CA/05/C	BLE Modulation characteristics		
TRM-LE/CA/06/C and TRM-LE/CA/07/C	BLE Carrier frequency offset and drift		

• Graphical Displays (Basic Rate/BLE)

Graphs		
Power Burst profile		Powe
Frequency deviation		Frequ
Eye diagram		IQ co
Spectral profile]	DEVI

Graphical Displays (EDR)

Graphs	
Power burst profile	
Frequency deviation	
IQ constellation diagram	
DEVM against symbol	
Vector diagram	
Spectral profile	

Receiver Test

The MV887040A application provides support for transmission of *Bluetooth* signals from the vector signal generator to the device under test. The number of received packets can then be read using the chipset vendor's control software.

MU887000A TRX Test Module

Standard Waveforms

Bluetooth	Waveform Type		
Basic Rate	DH1/DH3/DH5		
Enhanced Data Rate (EDR)	2-DH1/2-DH3/2-DH5/3-DH1/3-DH3/3-DH5		
Bluetooth Low Energy	BLE/PER Report Integrity Test		
Others	GFSK/PSK CW (Interference Waveform)		

Bluetooth RX Measurement

 Bluetooth Test Specification v1.2/2.0/2.0 + EDR/2.1/2.1 + EDR/3.0/3.0 + HS/4.0: RF-PHY.TS.4.0.2/RF-PHY.TS.4.0.3: RX Test

Specification	Test Items
RCV/CA/01/C	Sensitivity – single slot packets
RCV/CA/02/C	Sensitivity – multi-slot packets
RCV/CA/06/C	Maximum Input Level
RCV/CA/07/C	EDR Sensitivity
RCV/CA/08/C	EDR BER Floor Performance
RCV/CA/10/C	EDR Maximum Input Level
RCV-LE/CA/01/C and	BLE Receiver sensitivity
RCV-LE/CA/02/C	
RCV-LE/CA/06/C	BLE Maximum input signal level
RCV-LE/CA/07/C	PER Report Integrity

Simple Test Solution / Receiver Test Solution

MX887050A Short Range Wireless Average Power and Frequency Measurement

Installing the MX887050A Short Range Wireless Average Power and Frequency Measurement Software in the MT8870A Universal Wireless Test Set provides support for simple tests for WLAN and *Bluetooth* short range wireless. The MX887050A supports CW power and frequency measurements on unmodulated signals and on signals modulated using the methods shown in the table below.

Supported Modulation Methods				
WLAN DSSS, OFDM				
Bluetooth	GFSK, PSK			

For Simple Tests

MX887050A Short Range Wireless Average Power and Frequency Measurement

Test Port		4 [4] 0.000 ms			Full captu	•		â	524 ms
CW Analysis	0	CW Analysis X							
Frequency (MHz):	2412 🛟	Measurements							
Power Level (dBm):	-30 💲	and the second se		Average	Minimum	Maximum		Upper Limit	
Duration (ms):	0.500 \$	Average Power (dBm)					-100.00	100.00	Fatz
Setting (us):	0 :	Peak Power (dBm)	-12.21						
Trigger Mode	Immediate .	frequency	Current	Average	Minimum	Maximum	Lower Limit	Upper Limit	Result
Tripper Delay (ms):	0.000 0	Frequency Offset (Hz)	-86					1000000	Pasz
Trigger Level (dll)	-20 (
Digitary Num	elical Republic								
Measurements	0								

CW Measurement using CombiView

MV8871xx Series Waveforms

The MT8870A/MU887000A supports Rx tests of receivers using the various common communications technologies in widespread use today.

Receiver Test Using Waveforms

The MV8871xx Series Waveforms is a file of waveforms for generating any output waveform standardized by each communications technology. Saving and selecting these files in the internal waveform memory of the MU887000A TRX Test Module makes it easy to output a signal for any waveform pattern from the built-in vector signal generator.

Waveform file generated from the MU887000A TRX Test Module vector signal generator can be used to run sensitivity tests and simple BER Rx tests* on GPS and digital broadcast equipment supporting mobile terminals and communications appliances.

*: An external attenuator is required when running Rx tests at lower levels than the lower output limit of the signal generator.

MU887000A TRX Test Module

Main Specifications of MV8871xxA Series Waveforms

MV887100A GPS Waveforms

Waveform File Name	MV887100A_GPS_0002	MV887100A_GPS_0003			
Application	Sensitivity Test/BER Measurement Parity Detection/Sensitivity Test				
Transmitted Data Modulation Method	BPSK				
Satellite ID Number	1				
Reference Standard	GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION				

MV887102A GLONASS Waveforms

Waveform File Name	MV887102A_GLONASS_0001	MV887102A_GLONASS_010x MV887102A_GLONASS_011x	
Application	Sensitivity Test/BER Measurement	Simultaneous GPS and GLONASS measurements*, C/No measurements	
Transmitted Data Modulation Method	BPSK	BPSK	
Satellite ID Number	3	-	
Reference Standard	INTERFACE CONTROL DOCUMENT Navigational radio signal In bands L1, L2 Edition 5.1		

*: MV887100A GPS waveforms license is required to perform simultaneous GPS and GLONASS measurements.

MV887110A DVB-H Waveforms

Waveform File Name	MV887110A_DVBH_0001	
Application	Simple BER Measurement	
Transmitted Data	PN9fix*	
Transmitted Data Modulation Method	QPSK	
Encoding Rate	2/3	
System Bandwidth	8 MHz	
Cell ID	0x0000	
Reference Standard	ETSI EN 300 744 V1.5.1 (2004-11)	

*: fix indicates the PN sequence is not continued if the waveform is regenerated from the first position.

MV887111A ISDB-T Waveforms

Waveform File Name	MV887111A ISDBT 0001	MV887111A ISDBT 0002	MV887111A ISDBT 0003	MV887111A ISDBT 0004
vvavelorm File Name	WV867111A_ISDB1_0001	I MV887111A_ISDB1_0002 MV887111A_ISDB1_0003		
Application	Device Evaluation	Video and Audio Evaluation*1	l	Simple BER Measurement
Waveform Cycle/Group	2 [Frame]	40 [Frame]	40 [Frame]	4 [Frame]
Transmitted Data	PN23fix*2			
Transmitted Data Modulation Method	Layer A: 64QAM and Layer A: QPSK Layer B: 64QAM	Layer A: QPSK Layer B: 64QAM		Layer A: QPSK or 16QAM Layer B: 64QAM
Guard Interval	1/8	I		I
Encoding Rate	No Encoding	Layer A: 2/3 Layer B: 7/8	Layer A: 2/3 Layer B: 3/4	Layer A: 2/3 or 1/2 Layer B: 3/4 or 7/8
Mode	3	·		
Reference Standard	ARIB STD-B31			

*1: Rx not guaranteed for all receivers

*2: fix indicates the PN sequence is not continued if the waveform is regenerated from the first position.

MV887112A ISDB-Tmm Waveforms

Waveform File Name	MV887112A_ISDBTmm_SSpatA_000x_0M (x = 1 to 6) MV887112A_ISDBTmm_SSpatA_000x_8M (x = 1 to 6) MV887112A_ISDBTmm_SSpatC_000x_0M (x = 7 to 12) MV887112A_ISDBTmm_SSpatC_000x_8M (x = 7 to 12) The XXXX_8M waveform pattern is a waveform with the file name XXXX_0M to which an 8-MHz offset has been added.	
Application	Simple BER Measurement	
Waveform Cycle/Group	4 [Frame]	
Transmitted Data	PN23fix*	
Transmitted Data Modulation Method	QPSK or 16QAM	
Waveform Format	A type or C type	
Guard Interval	1/4	
Encoding Rate	1/2 or 2/3	
Mode	3	
Reference Standard	ARIB STD-B46	

*: fix indicates the PN sequence is not continued if the waveform is regenerated from the first position.

* Consult Anritsu for details about each waveform file.

FM/Audio Measurement Solution

MX887070A FM/Audio TRX Measurement MV887070A FM RDS Waveforms

The MT8870A/MU887000A supports TRx tests of FM transceivers and adding an option also supports audio tests.

FM Transmitter Test

Installing the MU887000A-002 Audio Measurement Hardware in the MU887000A TRX Test Module outputs either analog or digital format audio signals for up to 8 multi-tones (stereo left and right channels) from the output connector. The audio signal is available for input to the FM transmitter audio input connector.

The MX887070A FM/Audio TRX Measurement software is used with the built-in signal analyzer of the MU887000A TRX Test Module to execute various audio tests, such as measurement of RF frequency, level and frequency deviation of audio FM signals output from FM transmitters, as well as AF signal frequency, level (up to 12 multi-tones), distortion, stereo crosstalk, etc., when using AF signal waveforms, and analysis of internal data and output of RDS data by decoding data when receiving RDS waveforms.

FM Transmitter Test using CombiView

RDS Measurement Results using CombiView

FM Receiver Test

To test FM receivers using the MX887070A FM/Audio TRX Measurement software, the specified test audio signal is frequency modulated and a signal is output from the vector signal generator.

Installing the MU887000A-002 Audio Measurement Hardware in the MU887000A TRX Test Module inputs either analog or digital format audio signals output from the FM receiver to the built-in audio analyzer of the MU887000A to perform audio tests including AF signal frequency and level (up to 12 multi-tones), distortion rate, stereo crosstalk, etc.

FM Receiver Test using CombiView (device audio output measurement)

FM Receiver Test RDS (Radio Data System)

Loading the MV887070A FM RDS waveforms supports output of waveforms including transmitted data such as Radio Text data from the built-in vector signal generator based on the FM RDS (Radio Data System) standard.

Main Specifications of FM RDS Waveforms

Waveform File N	lame	MV887070A_FMRDS_0001	MV887070A_FMRDS_0002	MV887070A_FMRDS_0003	MV887070A_FMRDS_0004
Application		DUT RDS Rx Function Test DUT Rx Test		DUT Rx Test	
AE1-4	Tone Count	1			
AF Left Channel	Tone Frequency	1 kHz			
Tone Deviation 75 kHz × 0.9					
Tone Count		1			
AF Right Channel	Tone Frequency	2 kHz			
Channer	Tone Deviation	75 kHz × 0.9			
Pilot Deviation		75 kHz × 0.1			
RDS Deviation		75 kHz x 0.05			
Reference Stand	dard	IEC 62106 Edition 2.0			

* Consult Anritsu for details about the FM RDS waveform file.

PC Application

CombiTest Automated Manufacturing

CombiTest is supplied with the instrument as a fast and easy means of building test plans. Just select the required calibration or verification tasks from the menu and drag them to position in the test plan.

Test plans can be as brief or as comprehensive as required and can include transmitter and receiver tasks for both Bluetooth and WLAN. All results are automatically archived to a database.

Control packages developed in partnership with leading silicon vendors result in test plans that configure and control the device under test for each test item as required. When using a control package, fully automated test plans can be created and edited in minutes, eliminating the need to write custom manufacturing test programs.

Specifications

MX887030A WLAN 802.11b/g/a/n TX Measurement

_	Measuring Object	WLAN Signal Packet
Common Item	Frequency Range	2.4 GHz Band: 2412 MHz to 2484 MHz 5 GHz Band: 4920 MHz to 5825 MHz (Required MX887000A-001)
	Input Setting Range	-65 to +25 dBm (Test port 3 and 4)
	Accuracy	After CAL, 20° to 30°C ±0.7 dB (–30 dBm ≤ Level ≤ +25 dBm), ±1.0 dB (–50 dBm ≤ Level < –30 dBm)
	Bandwidth	40 MHz, 20 MHz (802.11n)
		20 MHz (802.11b/g/a)
RF Power	Capture Time	Up to 1.34 s
	Pre-trigger	Up to 1.34 s
	Resolution (time domain profile)	5 ns/sample
	CCDF	CCDF defined as a percentage of samples against dB, where percentage of samples is normalized to the average power in the 'gate', and dB is defined as the relative value of samples greater than the average.
	Power Distribution Value	A single numeric value called the power distribution value defines the number of dB above the average power below which a user defined percentage of the total number of samples falls.
	Span	±65 MHz (802.11n) ±35 MHz (802.11b/g/a)
	Minimum Capture Time	50 µs
Spectral Profile	Input Signal Measurement Range (RBW: 100 kHz)	-27 to +25 dBm
Measurement	Linearity	CW, RBW: 100 kHz, Same as MU887000A Level Linearity Test port 3 and 4. ±0.2 dB (≥ –55 dBm, 0 to –40 dB)
	Resolution	0.1 dB
	Bandwidth	100 kHz
	Measurement Range	-20 to +25 dBm
EVM	Residual EVM	DSSS: <28 dB (Signal level: >-20 dBm, Averaged over 20 packets) OFDM: <40 dB (Signal level: >-20 dBm, Averaged over 20 packets, Channel Estimation: FULLPACKE
(Modulation	EVM Data Format	dB, %
Accuracy)	Resolution	0.1% or 0.1 dB, All limit checking in dB to 0.1 dB resolution
	Speed	>20 readings/second
	RX Filter Type	None, Gaussian, Root Raised Cosine
	Gaussian Filter Setting BT	BT 0.3 to 1.0, Resolution: 0.1
DSSS EVM	Root Raised Cosine Filter Setting	α 0.30 to 1.00, Resolution: 0.01
Measurement	Measurement Start	It shall be possible to measure EVM from the first data chip of the packet
Setting	Measurement Method	Header or payload. Header measures the EVM of the first 1000 chips of the PLCP preamble and header.
	User Specified Measurement Range	220 to 11000 chips
	Measurement Functional Range	Measurement only possible if channel frequency error <±150 kHz (±60 ppm)
	Carrier Lock	Phase tracking automatically applied as per carrier lock 802.11-2007 18.4.7.8
	Channel Estimation	User selection of Long Training Sequence or Full Packet.
OFDM EVM	User Specified Measurement Range	Min. 16 symbols, Max. 1000 symbols
Measurement Setting	OFDM Pilot Tracking	"Phase tracking only" or "Phase and Amplitude Tracking". Peak and Average EVM on all sub-carriers, dB or percentage
ocung		Peak and Average on each sub-carrier – frequency domain % vs. sub-carrier EVM vs. Symbol – time domain % vs. Symbol number, 1 to max
	Transmit Center Frequency	Definition: Average frequency of the DSSS carrier signal Accuracy: ± (Setting frequency × Reference oscillator accuracy + 1 kHz)
	Tolerance	Resolution: Hz to no decimal places, ppm to one decimal place
		Definition: Frequency error relative to the 11 MHz chip clock. Measurement averaged over a fully coded DSSS packet with minimum payload length 3300 chips, 300 µs
	Chip Clock Frequency Tolerance	Display format: Hz, ppm Range: ±50 ppm
DSSS Additional Measurement		Resolution: Hz to no decimal places, ppm to one decimal place Data Analysis width: 20 μ s (220 chips) minimum
		User Specified measurement range: 3300 to 30250 chips
	Transmit Power-on and Power Down Ramp	Definition: Time for burst to transit from 10 to 90% or 90 to 10% of linear power. Data outputs: 10%, 90%, Delta values
	· · · · · · · · · · · · · · · · · · ·	Resolution: 5 ns
	RF Carrier Suppression	Method: IEEE Std 802.11-2007 (18.4.7.7), IQ offset method IEEE method: Relative level of the carrier to the highest sideband for a 10101010 test pattern with scrambler disabled, data rate 2 Mbps.
		IQ Offset method: Calculated from the relative values of the peak frequency response and the channel center frequency with the data rate processing gain.

	Transmit Center Frequency	Definition: Average frequency of the OFDM carrier signal Data output format: Hz, ppm Accuracy: >1 ms packet, ± (Setting frequency × Reference oscillator accuracy + 1 kHz) Resolution: Hz to no decimal places, ppm to one decimal place Symbol clock frequency tolerance Definition: Frequency error relative to the 250 kHz symbol clock as per 19.4.7.3/17.3.9.5 Measurement averaged over a fully coded OFDM packet with a minimum payload length
OFDM Additional Measurement		of 16 symbols (64 µs) Data output format: Hz, ppm Range: ±40 ppm Resolution: ppm to one decimal place User specified measurement range: 16- (Define numbers)
	Transmitter Center Frequency Leakage	Definition: Measurement of the leakage of the center carrier Data output format: dB Resolution: dB to two decimal places Transmitter spectral flatness Definition: Measurement of RF sub-carrier power level Unit of measurement: dB
Additional	Power Spectral Density	The maximum power measured in a 1 MHz bandwidth within the occupied bandwidth of the signal
Measurement	Occupied Bandwidth	Measures the frequency range within which the specified percentage power is contained
(DSSS and OFDM)	Occupied Bandwidth Percentage Range	1 to 99%

MX887031A WLAN 802.11ac TX Measurement

Common Item	Measuring Object	WLAN Signal Packet
Common ttern	Frequency Range	5 GHz Band: 4920 MHz to 5825 MHz (Required MX887000A-001)
	Input Setting Range	-65 to +25 dBm (Test port 3 and 4)
	Accuracy	After CAL, 20° to 30°C ±0.7 dB (–30 dBm ≤ Level ≤ +25 dBm), ±1.0 dB (–50 dBm ≤ Level < –30 dBm)
	Bandwidth	160, 80, 40, 20 MHz
	Capture Time	Up to 1.34 s
RF Power	Pre-trigger	Up to 1.34 s
	Resolution (time domain profile)	5 ns/sample
	CCDF	CCDF defined as a percentage of samples against dB, where percentage of samples is normalized to the average power in the 'gate', and dB is defined as the relative value of samples greater than the average.
	Power Distribution Value	A single numeric value called the power distribution value defines the number of dB above the average power below which a user defined percentage of the total number of samples falls.
	Spectral Profile Measurement Span	±80 MHz
	Minimum Capture Time	50 µs
Spectral Profile	Input Signal Measurement Range (RBW: 100 kHz)	-27 to +25 dBm
Measurement	Linearity	CW, RBW: 100 kHz ±0.2 dB (≥ –55 dBm, 0 to –40 dB)
	Resolution	0.1 dB
	Measurement Bandwidth	100 kHz
	EVM Measurement Range	-20 to +25 dBm
EVM (Modulation Accuracy)	Residual EVM (Bandwidth: ≤80 MHz)	<-38 dB (Signal level: >-10 dBm, Averaged over 20 packets, Channel estimation: FULLPACKET)
	EVM Data Format	dB, %
	Measurement Resolution	0.1% or 0.1 dB, All limit checking in dB to 0.1 dB resolution
	Measurement Speed	>20 readings/second
	Channel Estimation	User selection of Long Training Sequence or Full Packet.
OFDM EVM	User Specified Measurement Range	Min. 16 symbols, Max. 1000 symbols
Measurement Setting	OFDM Pilot Tracking	"Phase tracking only" or "Phase and Amplitude Tracking". Peak and Average EVM on all sub-carriers, dB or percentage Peak and Average on each sub-carrier – frequency domain % vs. sub-carrier EVM vs. Symbol – time domain % vs. Symbol number, 1 to max.
OFDM Additional Measurement	Transmit Center Frequency Tolerance	 Definition: Average frequency of the OFDM carrier signal Data output format: Hz, ppm Accuracy: >1 ms packet, ± (Setting frequency × Reference oscillator accuracy + 1 kHz) Resolution: Hz to no decimal places, ppm to one decimal places Symbol clock frequency tolerance Definition: Frequency error relative to the 250 kHz symbol clock as per 19.4.7.3/17.3.9.5 Measurement averaged over a fully coded OFDM packet with a minimum payload lengt of 16 symbols (64 µs) Data output format: Hz, ppm Range: ±40 ppm Resolution: ppm to one decimal places User specified measurement range: 16- (Define numbers)
	Transmitter Center Frequency Leakage	Definition: Measurement of the leakage of the center carrier Data output format: dB Resolution: dB to two decimal places Transmitter spectral flatness Definition: Measurement of RF sub-carrier power level Unit of measurement: dB

MX887040A Bluetooth TX Measurement

	Measuring Object	Bluetooth Signal Packet (DH-1, 3, 5 2-DH-1, 3, 5 3-DH-1, 3, 5 LE)
Common Item	Frequency Range	2402 MHz to 2480 MHz
	Measurement Mode	'SIG Standard' Supports RF measurements on selected packet types as per the SIG RF test standard
RF Power	Input Signal Measurement Range	-65 to +25 dBm (Test port 3 and 4)
	Measurement Accuracy	After CAL, 20° to 30°C ±0.7 dB (–30 dBm ≤ Level ≤ +25 dBm), ±1.0 dB (–50 dBm ≤ Level < –30 dBm)
	Input Signal Measurement Range	-35 to +25 dBm
	Measurement	Maximum, Minimum, Average differential power
EDR Relative Transmit Power	Relative Power Measurement Range	Relative power measurement range between the GFSK and π /4DQPSK or 8DSPK sections of the packet
	Power Measurement Bandwidth	1.3 MHz (IF filter response 'flat' fc ±550 kHz)
	Maximum Resolution (time domain)	0.01 dB
	GFSK, π/4DQPSK, 8DPSK	
	DEVM (Modulation Accuracy)	
	Input Signal Measurement Range	-20 to +25 dBm
	Residual DEVM	<5% (Signal level: >–20 dBm, Averaged over 10 packets)
	Measurement Resolution	0.1%
Bluetooth Modulation	GFSK Modulation	Deviation measurement range: 0 to 350 kHz Accuracy: Modulation index: 0.32, Signal level: >–20 dBm, Averaged over 10 packets 1% (±0.01 × expected deviation [Hz]) (nominal)
	Initial Carrier Frequency Tolerance	Input signal measurement range: –35 to +25 dBm Initial frequency measurement range: 0 to ±150 kHz Resolution: 1 kHz
	Carrier-frequency Drift	Input signal measurement range: –35 to +25 dBm Frequency drift range: 0 to ±200 kHz Time settings: 50 μs, >2000 μs
	Measurement Range	±100 kHz
EDR Carrier	Resolution	1 kHz
Frequency Stability	Accuracy	Signal level: >-20 dBm, Averaged over 10 packets ± (Setting frequency × Reference oscillator accuracy + 500 Hz)
	Displayed Results	Initial frequency error ωi, Frequency error ωo, Frequency error ωi + ωo
EDR Modulation	RMS DEVM Range	0 to 30% π/4DQPSK, 0 to 20% 8DPSK
Accuracy	Peak DEVM Range	0 to 50% π/4DQPSK, 0 to 30% 8DPSK
	GFSK	
	Input Signal Measurement Range	-35 to +25 dBm
BLE Modulation Characteristics	Frequency Deviation Measurement Range	0 to ±500 kHz peak
	Resolution	1 kHz
	Accuracy	Modulation index: 0.5, Signal level: >-20 dBm, Averaged over 10 packets 1% (±0.01 × expected deviation [Hz]) (nominal)
	Input Signal Measurement Range	-35 to +25 dBm
BLE Carrier	Frequency Measurement Range	0 to ±500 kHz
Frequency Offset and Drift	Accuracy	Signal level: >–20 dBm, Averaged over 10 packets ± (Setting frequency × Reference oscillator accuracy + 500 Hz)

MX887050A Short Range Wireless Average Power and Frequency Measurement

ing Range	-65 to +25 dBm (Test port 3 and 4)
Frequency Range	2.4 GHz Band: 2402 MHz to 2484 MHz
y Range	5 GHz Band: 4920 MHz to 5825 MHz (Require MU887000A-001)
	After CAL
	400 MHz ≤ f ≤ 3.8 GHz, 10° to 40°C
	±0.7 dB (–30 ≤ Level ≤ +25 dBm)
	±0.9 dB (–55 ≤ Level < –30 dBm)
nent Accuracy	±1.1 dB (–65 ≤ Level < –55 dBm)
	3.8 GHz ≤ f ≤ 6 GHz, 20° to 30°C
	±0.7 dB (–30 ≤ Level ≤ +25 dBm)
	±0.9 dB (–55 ≤ Level < –30 dBm)
	±1.1 dB (–65 ≤ Level < –55 dBm)
	CW, RBW: 100 kHz
	±0.2 dB (≥–55 dBm, 0 to –40 dB)
asurement Range	-35 to +25 dBm
sly Frequency Measurement Range	0 to ±500 kHz (CW, Bluetooth)
	0 to ±100 kHz (WLAN)
	± (Setting frequency × Reference oscillator accuracy + 500 Hz)
	y Range

MV887030A WLAN 802.11b/g/a/n Waveforms

	802.11b	Packet length: 1024 byte, Gaussian filter: BT 0.5 ≤−38 dB rms (2402 MHz to 2484 MHz)
	802.11g	Packet length: 1000 byte, 20° to 30°C ≤-40 dB rms (2402 MHz to 2484 MHz)
EVM	802.11a	Packet length: 1000 byte, 20° to 30°C ≤−38 dB rms (4920 MHz to 5825 MHz)
	802.11n	Packet length: 4096 byte, Long guard interval, Channel bandwidth: 40 MHz, 20° to 30°C ≤-40 dB rms (2402 MHz to 2484 MHz) ≤-38 dB rms (4920 MHz to 5825 MHz)

MV887040A Bluetooth Waveforms

Deviation	Frequency: 2402 MHz to 2480 MHz, GFSK modulation 1% (±0.01 × Deviation Hz) (nominal)
DEVM	Frequency: 2402 MHz to 2480 MHz, π/4-DQPSK or 8-DPSK modulation <5% rms

MV887112A ISDB-Tmm Waveforms

MER	Frequency: 214.714285 MHz
	≥37 dB (total)

MX887070A FM/Audio TRX Measurement

FM Signal Measurements

Common Item	Target Signals	FM/FM Stereo/RDS (Radio Data System) Signals
Common term	Frequency Range	65 MHz to 110 MHz
	Measurement Functions	Amplitude Carrier Frequency Frequency Deviation Occupied Bandwidth Pilot Frequency Deviation Audio Frequency Deviation Audio Frequency Pilot Frequency THD THD THD SNR
	Audio Filter	Low Pass: OFF, 3 kHz,15 kHz, 20 kHz, 30 kHz High Pass: OFF, 20 Hz, 100 Hz, 400 Hz De-emphasis: OFF, 50 µs, 75 µs Band Pass (Weighting Filter): OFF, A-Weighting (IEC 61672: 2003), C-Message, CCITT (ITU-T O.41)
Tx Measurements	Input Level Range	-30 to +15 dBm (Test Port 1/2) -30 to +15 dBm (Test Port 3/4)
	Level Accuracy	At Measurement Bandwidth = 1.2 MHz Test Port $1/2$ $-30 \text{ dBm} \le \text{Level} \le +15 \text{ dBm}, \pm 0.7 \text{ dB}$ at 10° to 40° C Test Port $3/4$
	Carrier Frequency Accuracy	-30 dBm ≤ Level ≤ +15 dBm, ±0.7 dB at 10° to 40°C FM Mono modulation, with 1 kHz Tone, 75 kHz deviation ± (Setting frequency × Reference oscillator accuracy + 1 Hz)
	FM Deviation Measurement Range	1 kHz to 100 kHz
	Residual FM	At Mono, 1 kHz Tone, 75 kHz deviation, demodulation bandwidth: 20 Hz to 15 kHz, using De-emphasis Filter (50 μs) >55 dB
	Demodulation Signal Analysis	No. of FFT Points: 65536 Sampling Rate: 152 kHz FFT window function: Hanning window
	Measurement Functions	FM Waveform output
	Modulation Method	FM Mono, FM Stereo
Rx Measurements	Frequency Deviation	Setting Range: 20 kHz to 100 kHz Distortion: >50 dB (SINAD) [65 MHz to 110 MHz, (SINAD, 20 Hz to 15 kHz, Emphasis On, Mono) Deviation 75 kHz, Tone = 1 kHz] Resolution: 0.1 Hz
	Internal Modulation Signal	AF Tone L channel (Mono): 1 to 8 tones R channel: 1 to 8 tones
	Frequency Range	20 Hz to 20 kHz Resolution: 0.1 Hz

Audio Signal Measurements With MU887000A-002 Audio Measurement Hardware installed, TRx measurements of analog audio signal from AF Input/Output connector or digital audio signal from AF Digital connector

	I I OIII AI DIGITAI COIIICCIOI	
Tx Measurements	Measurement Functions	Amplitude Frequency Distortion Ratio Measurement Crosstalk THD THD+N/SINAD SNR
	Analog Measurements	All single-tone measurement standard values Impedance: 100 kΩ (AC coupling) Frequency Measurement Frequency Range: 20 Hz to 20 kHz Level Measurement Measurement Range: 1 mVpeak to 5 Vpeak (30 Vrms Max.) Input Range Setting: 50 mVpeak, 500 mVpeak, 5 Vpeak Level Accuracy: ±0.4 dB (20° to 30°C) THD+N (Total Harmonic Distortion + Noise) <-60 dB (at 1 kHz, 2 Vpeak, 20 Hz to 20 kHz bandwidth, 5 Vpeak range, 20° to 30°C)
	Digital Measurement	All single-tone measurement standard values Bit Resolution: 16 bits/24 bits Sampling Rate Frequency: 16 kHz, 32 kHz, 44.1 kHz, 48 kHz AF Signal Analysis No. of FFT Points: 16384 (sampling rates of 48 kHz, 44.1 kHz) 8192 (sampling rate of 32 kHz) 4096 (sampling rate of 16 kHz) FFT window function: Hanning window
Rx Measurement	Analog Measurements	All single-tone measurement standard values Impedance: 1 Ω (nominal, AC coupling) Output Waveform: Single tone, Multi-tone Frequency Frequency Range: 20 Hz to 20 kHz Frequency Resolution: 0.01 Hz Output Level Level Range: 0 (off), 1 mV to 5 Vpeak (100 kΩ termination) Level Resolution: 1 mV (≤5 Vpeak) 100 μV (≤500 mVpeak) 10 μV (≤500 mVpeak) Level Accuracy: ±0.3 dB (At 1 kHz, 100 kΩ termination, 20° to 30°C) Max Output Current 100 mA (nominal) Do not do short circuit THD+N (Total Harmonic Distortion + Noise) <-60 dB (At 1 kHz, 1 Vpeak, 20 Hz to 20 kHz bandwidth, 100 kΩ termination, 20° to 30°C)
	Digital Measurement	All single-tone measurement standard values Output Waveform: Single tone, Multi-tone Frequency Frequency Range: 20 Hz to 20 kHz (44.1 kHz, 48 kHz sampling) 20 Hz to 14 kHz (32 kHz sampling) 20 Hz to 7 kHz (16 kHz sampling) Frequency Resolution: 0.01 Hz Output Level Level Range: Full Scale to (Full Scale – 40 dB) Level Resolution: 16 bts/24 bits Sampling Rate Frequency: 16 kHz, 32 kHz, 44.1 kHz, 48 kHz

Ordering Information

Please specify the model/order number, name and quantity when ordering. The names listed in the chart below are Order Names. The actual name of the item may differ from the Order Name

Model/Order No.	Name
	Main frame
MT8870A	Universal Wireless Test Set
	Standard accessories
	Power Cord: 1 pc
B0666A	Blank Panel: 3 pcs*1
	DVD-R: 1 pc
MX880050A	CombiView (DVD-R)
MX880051A	Cellular Application Applet (DVD-R)
MX880052A	SRW Application Applet (DVD-R)
MX880053A	FM/Audio Application Applet (DVD-R)
MX880054A	Signal Generator Application Applet (DVD-R)
MX887900A	MT8870A Utility Tool (DVD-R)
W3605AE	MT8870A Operation Manual (DVD-R)
W3606AE	MU887000A Operation Manual (DVD-R)
	Options
MT8870A-001	GPIB Control
MT8870A-101	GPIB Control Retrofit
	Warranty
MT8870A-ES210	2 Years Extended Warranty Service
MT8870A-ES310	3 Years Extended Warranty Service
MT8870A-ES510	5 Years Extended Warranty Service
	Application parts
B0666A	Blank Panel
B0664A	Rack Mount Kit (MT8870A)
B0665A	Carrying Case (MT8870A)
B0669A	Front Cover for 1MW5U (MT8870A)
J0006	GPIB Cable, 0.5 m
J0007	GPIB Cable, 1.0 m
J0008	GPIB Cable, 2.0 m
J0127A	Coaxial Cord, 1 m (BNC-P · RG-58A/U · BNC-P)
J0127B	Coaxial Cord, 2.0 m (BNC-P · RG-58A/U · BNC-P)
J0127C	Coaxial Cord, 0.5 m (BNC-P · RG-58A/U · BNC-P)
J0576B	Coaxial Cord, 1.0 m (N-P · 5D-2W · N-P)
J0576D	Coaxial Cord, 2.0 m (N-P · 5D-2W · N-P)
J0322A	Coaxial Cord, 0.5 m (SMA-P · SMA-P, DC to 18 GHz, 50Ω)
J0322B J0322C	Coaxial Cord, 1.0 m (SMA-P · SMA-P, DC to 18 GHz, 50Ω) Coaxial Cord, 1.5 m (SMA-P · SMA-P, DC to 18 GHz, 50Ω)
J0322C	Coaxial Cord, 1.5 III (SMA-P · SMA-P, DC to 18 GHz, 50Ω) Coaxial Cord, 2.0 m (SMA-P · SMA-P, DC to 18 GHz, 50Ω)
J0004	Coaxial Cold, 2.0 III (SIVIA-F \cdot SIVIA-F, DC to 18 GHz, 50 Ω) Coaxial Adapter (N-P \cdot SMA-J)
J1261A	Ethernet Cable (Shield type, Straight, 1 m)
J1261B	Ethernet Cable (Shield type, Straight, 3 m)
J1261C	Ethernet Cable (Shield type, Crossover, 1 m)
J1261D	Ethernet Cable (Shield type, Crossover, 3 m)
512010	Ethemet Gable (Shield type, Glossover, 3 III)

*1: Installed in empty slots

Model/Order No. Name Test module MU887000A TRX Test Module Standard accessories DVD-R: 1 pc W3606AE MU887000A Operation Manual (DVD-R) Options MU887000A-001 6 GHz Frequency Extension MU887000A-101 6 GHz Frequency Extension Retrofit MU887000A-002 Audio Measurement Hardware MU887000A-102 Audio Measurement Hardware Retrofit Warranty MU887000A-ES210 2 Years Extended Warranty Service MU887000A-ES310 3 Years Extended Warranty Service MU887000A-ES510 5 Years Extended Warranty Service Model/Order No. Name Software MX887010A Cellular Standards Sequence Measurement MX887011A W-CDMA/HSPA Uplink TX Measurement MX887012A GSM/EDGE Uplink TX Measurement LTE FDD Uplink TX Measurement MX887013A MX887014A LTE TDD Uplink TX Measurement MX887015A CDMA2000 Reverse Link TX Measurement MX887016A 1xEV-DO Reverse Link TX Measurement MX887017A **TD-SCDMA Uplink TX Measurement** MX887030A WLAN 802.11b/g/a/n TX Measurement*2 MX887031A WLAN 802.11ac TX Measurement*2 MX887040A Bluetooth TX Measurement MX887050A Short Range Wireless Average Power and Frequency Measurement MX887070A FM/Audio TRX Measurement*3 Waveform file MV887011A W-CDMA/HSPA Downlink Waveforms MV887012A GSM/EDGE Downlink Waveforms MV887013A LTE FDD Downlink Waveforms MV887014A LTE TDD Downlink Waveforms MV887015A CDMA2000 Forward Link Waveforms MV887016A 1xEV-DO Forward Link Waveforms TD-SCDMA Downlink Waveforms MV887017A MV887030A WLAN 802.11b/g/a/n Waveforms*2

MV887031A WLAN 802.11ac Waveforms*2 Bluetooth Waveforms MV887040A MV887070A FM RDS Waveforms GPS Waveforms MV887100A MV887102A **GLONASS** Waveforms MV887110A **DVB-H Waveforms** MV887111A ISDB-T Waveforms MV887112A **ISDB-Tmm Waveforms**

*2: Requires MU887000A-001 for 5 GHz (802.11a/n/ac) frequency

measurements

*3: Requires MU887000A-002 for Audio Signal measurements

• CDMA2000[®] is a registered trademark of the Telecommunications Industry Association (TIA-USA).

• The Bluetooth® mark and logos are owned by Bluetooth SIG, Inc. and are used by Anritsu under license.

• Windows[®] is a registered trademark of Microsoft Corporation in the USA and other countries.

· Other companies, product names and service names are registered trademarks of their respective companies.

/incitsu

United States

Anritsu Company 1155 East Collins Blvd., Suite 100, Richardson, TX 75081, U.S.A. Toll Free: 1-800-267-4878 Phone: +1-972-644-1777 Fax: +1-972-671-1877

Canada

Anritsu Electronics Ltd. 700 Silver Seven Road. Suite 120. Kanata. Ontario K2V 1C3, Canada Phone: +1-613-591-2003 Fax: +1-613-591-1006

Brazil Anritsu Eletrônica Ltda.

Praça Amadeu Amaral, 27 - 1 Andar 01327-010 - Bela Vista - São Paulo - SP - Brazil Phone: +55-11-3283-2511 Fax: +55-11-3288-6940

Mexico

Anritsu Company, S.A. de C.V. Av. Ejército Nacional No. 579 Piso 9, Col. Granada 11520 México, D.F., México Phone: +52-55-1101-2370 Fax: +52-55-5254-3147

United Kingdom

Anritsu EMEA Ltd. 200 Capability Green, Luton, Bedfordshire, LU1 3LU, U.K. Phone: +44-1582-433200 Fax: +44-1582-731303

• France

Anritsu S.A. 12 avenue du Québec, Bâtiment Iris 1- Silic 612, 91140 VILLEBON SUR YVETTE, France Phone: +33-1-60-92-15-50 Fax: +33-1-64-46-10-65

Germany

Anritsu GmbH Nemetschek Haus, Konrad-Zuse-Platz 1 81829 München, Germany Phone: +49-89-442308-0 Fax: +49-89-442308-55

Italy

Anritsu S.r.I. Via Elio Vittorini 129, 00144 Roma, Italy Phone: +39-6-509-9711 Fax: +39-6-502-2425

Sweden Anritsu AB

Kistagången 20B, 164 40 KISTA, Sweden Phone: +46-8-534-707-00 Fax: +46-8-534-707-30

Finland Anritsu AB Teknobulevardi 3-5, FI-01530 VANTAA, Finland Phone: +358-20-741-8100 Fax: +358-20-741-8111

Denmark Anritsu A/S (Service Assurance) Anritsu AB (Test & Measurement) Kay Fiskers Plads 9, 2300 Copenhagen S, Denmark Phone: +45-7211-2200 Fax: +45-7211-2210

Russia

Anritsu EMEA Ltd. **Representation Office in Russia** Tverskaya str. 16/2, bld. 1, 7th floor. Russia, 125009, Moscow

Phone: +7-495-363-1694 Fax: +7-495-935-8962

United Arab Emirates Anritsu EMEA Ltd.

Dubai Liaison Office P O Box 500413 - Dubai Internet City Al Thuraya Building, Tower 1, Suit 701, 7th Floor Dubai, United Arab Emirates Phone: +971-4-3670352 Fax: +971-4-3688460

India

Anritsu India Private Limited

2nd & 3rd Floor, #837/1, Binnamangla 1st Stage, Indiranagar, 100ft Road, Bangalore - 560038, India Phone: +91-80-4058-1300 Fax: +91-80-4058-1301

Specifications are subject to change without notice.

Singapore

Anritsu Pte. Ltd. 11 Chang Charn Road, #04-01, Shriro House Singapore 159640 Phone: +65-6282-2400 Fax: +65-6282-2533

• P.R. China (Shanghai) Anritsu (China) Co., Ltd.

Room 2701-2705, Tower A, New Caoheiing International Business Center No. 391 Gui Ping Road Shanghai, 200233, P.R. China Phone: +86-21-6237-0898 Fax: +86-21-6237-0899

• P.R. China (Hong Kong)

Anritsu Company Ltd. Unit 1006-7, 10/F., Greenfield Tower, Concordia Plaza, No. 1 Science Museum Road, Tsim Sha Tsui East, Kowloon, Hong Kong, P.R. China Phone: +852-2301-4980 Fax: +852-2301-3545

Japan

Anritsu Corporation 8-5, Tamura-cho, Atsugi-shi, Kanagawa, 243-0016 Japan Phone: +81-46-296-1221 Fax: +81-46-296-1238

Korea

Anritsu Corporation, Ltd. 5FL, 235 Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400 Korea Phone: +82-31-696-7750 Fax: +82-31-696-7751

Australia

Anritsu Pty. Ltd.

Unit 21/270 Ferntree Gully Road, Notting Hill, Victoria 3168, Australia Phone: +61-3-9558-8177 Fax: +61-3-9558-8255

Taiwan Anritsu Company Inc.

7F, No. 316, Sec. 1, NeiHu Rd., Taipei 114, Taiwan Phone: +886-2-8751-1816 Fax: +886-2-8751-1817

